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by

Rohnn Sanderson

B.S., Economics, University of Wyoming, 1999
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M.A., Economics, University of New Mexico, 2006
PhD., Economics, University of New Mexico, 2009
ABSTRACT
The formulation of economic time series problems has a long tradition of

progressing towards better estimation procedures of economic variables over time. This
tradition, however has sometimes left a void in our understanding as we smooth and de-
trend data to remove bias and correlation in attempts to correct for econometric problems
over time. For the purposes of forecasting, the practitioner is often left with a choice of
either a naive time series model or a static regression model with no effect across time.
However, the treatment of such data can be difficult and often model fit can be relatively
low. That does not need to necessarily be the case. Using dynamical systems
methodology that has been recently developed in the fields of Physics and Biology and
that is beginning to be used in Economics, we develop improved methods for estimation
through a better characterization of the functional form of an econonomic variable over
time, that does not have the constraints of linearity or independence that we often convey

on time series data.
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This dissertation will demonstrate the usefulness of dynamic systems methodology in
regression analysis. We will find that dynamic systems analysis allows an economic
variable changing over time to be split into random and deterministic components in
order to better understand the root cause of why an economic variable is changing over
time. Dynamic systems methodology will then be used to develop an equation that
explains the behavior of the economic variable over time for the purposes of simulating
possible changes to the economic system in the future. The equation of the dynamic

system will also be used to perform a supply and demand analysis on an industry.

We study the dynamic system of the gold industry, an industry with a diverse and rich
economic history. Gold has been valued by societies for hundreds of years due to its
many uses: store of wealth, commodity, industrial metal, art. Therefore the price and
production amounts of gold have been recorded by numerous countries for the last
century. Additionally gold markets have sustained may changes which have been well
documented. Because of the availability and diverse nature of data relating to the price of
gold, the gold industry was used as a case study to demonstrate the usefulness and

methodological differences of dynamic systems.

Dynamic systems methodology has undergone dramatic changes in other fields of study.
This paper will “make a case” for the use of dynamic system methodology in economics
in order to gain a more thorough understanding of how and why economic systems

behave the way they do over time.

viil
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Chapter 1 - Introduction

Overview
In general, some economists study the appropriate representation of economic variables
over time and how changes in variables over time affect economic equilibrium. This has
lead to a rich history in econometric time series analysis as well as the evolution of
theoretical models to account for changes in economic understanding. Increases in
computational speed and accuracy have lead to many new econometric tests and the
development of new functional forms to represent economic data. This being said, there
is still much work to be done in economic modeling. As a discipline, there is still a
prevalence toward simplifying assumptions (linear systems, stationarity, etc.) to estimate
and replicate dynamic economic systems. Before making simplfying assumptions we
should first seek to understand the behavior of the data we are analyzing. In
understanding the behavior or “character” of the data we are studying first, appropriate
econometric assumptions can be made. Dynamic systems methodology offers a global
approach to first understanding the character of economic data before making any
modeling assumptions. Simplifying assumptions, without fully understanding the nature
of the dynamic system, has left us with a gap in our knowledge of economic phenomena.
The gap caused by simplification, leads to difficulties in analyzing market structure

issues from an industrial organization standpoint.
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The following research employs dyanamic systems to relax the constraints implicit with
the normal simplifying assumptions of time series analysis. Reducing the simplifying
assumptions in regression analysis allows the data to tell the story. Changes in our
understanding of functional form can affect results of market structure models. This
paper will demonstrate that economists need to understand dynamic systems in their
general form with more rigor. A better understanding of dynamic systems will lead to
avoiding many specification problems, frequently the cause of difficulties in

understanding an industy or firm behavior.

The use of dynamic systems methodology is common in the study of physics. Dynamic
systems are used to describe motion of an object over time, such as the swing of a
pendulum or planetary orbits. In biology dynamic systems are used to assess changes in
populations and the movement of diseases in a population. For instance chicken pox
displays random behavior, suddenly expanding in one population and then dying off.
Whereas the spread of measles flu displays deterministic behavior, moving from one

geographic area to another in a more predictable pattern (Stone 1996).

This paper will show how to use dynamic system methodology to characterize an
industry’s economic system. The proper characterization of a dynamic system will allow
for a better understanding of how economic variables behave. Tests will show how to
describe the behavior of a dynamic system and how that information can be used to

modify the choices we make about the functional form of economic variables.
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To begin, we must describe what dynamic systems are and how they work. We will
identify the various classifications of different dynamic systems and demonstrate
problems with some conventional tests, such as autocorrelation. This paper will then
explore tests to appropriately determine what type of dynamic system is present. Finally,
the use of a case study of gold prices to give practical application to the methods

developed will be presented.

The historical chronology of our understanding of dynamic systems and time series

analysis helps to understand where we are currently. We will begin with a brief review

of the history of dynamic systems and time series analysis in economics.
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History of Time Series Analysis

The history of time series analysis in economics is as diverse as the many disciplines
which have contributed to our understanding, identification and classification of

probabilistic phenomena over time.

Pearson, Gauss and many others began by looking at discrete probabilities through
flipping coins, which they used to develop the normal distribution (Pearson 1897).
However, there was a disconnect between the discrete probability and the probability of
an event occurring in the future. Once they realized that discrete probabilities didn’t
accuratley explain the chance of some events occuring over time, many started to study
random processes including Yule, Pearson and others. Pearson was the first to use the
term “random walk” (Pearson 1905) which was used to describe the behavior of a system
in which the chance of an event occuring over time was not correlated with the previous
events of that particular variable. Bachelier saw the “random walk” process as a

stochastic difference equation of the form y, — y;_; = €. (Bachelier 1900)

Using a deck of cards, many early econometricians produced a random series. They
would take out the higher order cards from the deck, (Jacks, Queens and Kings) and
designate the 10 remaing cards per suite to have a value of zero to ten. Each color
represented positive or negative values. They would then draw a card, record the value,

replace it in the deck and reshuffle (Yule 1921). These records of numbers are how early
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statiticians created a random series over time, which evolved into early time series

analysis.

With time series analysis starting to pick up prevalence in the discipline of economics,
more economists looked to natural processes to explain economic phenomena. As
Stanley Jevons said "Time is the great independent variable of all change that which itself
flows on uninterruptedly, and brings the variety which we call motion and life". (Jevons
1877) In fact the “father” of neoclassical economics himself, Jevons was convinced that
economic downturns were correlated with high rates of sunspot activity (Jevons 1862).
Although this theory eventually proved to be wrong, Jevons’ line of inquiry started the

development of the autoregressive processes (AR).

The autoregressive process uses past data to predict future data. The early research on
autoregressive processes was primarily conducted by Yule, in which he defined the
sunspot data to be an AR(2) process or y; = f(Vi—1,Ye—2) + € (Yule 1921). Yule then
began to look for stationarity in time series and was instrumental in starting the
development of using oscillators for time series analysis (Yule 1926). He classified time

series data by four categories: random, conjunct, disjunct and oscillation.

A random series has no serial correlation, meaning the two events are not correlated over

time. If events are purely random, then any past events will in no way effect what will

happen in the future. In other words, what happens today does not influence tomorrow.
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An example of a random series is consecutive rolls of a die, the outcome of each roll is

independent of the previous roll.

A conjunct series has serial correlations which are all positive. These types of series tend
to confer on one another in directionality. For instance, if a variable has risen in the
previous period it is more likely to rise again. We see such behavior in stock prices

movements.

A disjunct series has serial correlations which are all negative. This type of series also
confers itself in directionality as the conjunct series, but in the opposite direction. So if a

variable falls today it is more likely to fall tomorrow.

Finally, what Yule believed to be the most prevelant and often the least common type of
random series used in economics, the oscillation series. The oscillation series has serial
correlations which switch sign. In this case we see data that is constantly going up and

down from period to period.

The identification of different catagories of the behavior of data over time was really the
beginning of using economic time series data as a dynamic system. During this era, a lot
of time was being spent studying random processes and how they follow a normal
distribution. Slutsky (1927) saw these natural processes as a moving summation and

started looking at time series problems through moving averages. The moving average is
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calculated by successively calculating an average of a defined interval that is shifted over
time. Finally, it was Wold who put it all together to develop the random stationary
process. (Wold 1938) The random stationary process is one in which the oscillation is

random and the average remains at a constant level over time.

More recently (1940-1950), other economists expressed the need to understand
dynamical systems such as Samuelson: “we should still need a theory of the path by
which a given market approaches its equilibrium position, not for sake of the theory
alone, but for the information that such knowledge throws upon the direction of
displacement of the new equilibrium position as well” (Samuelson 1943). However, even
Samuelson himself was conflicted over the appropriateness of using the understanding of
dynamical systems from other disciplines, such as physics or biology and questioned
their relevance. As a discipline, we have incorporated some of those concepts, such as
logistic functions and Brownian Motion. We use the concepts of dynamic systems in
natural resource economics for population changes as well as in explaining the movement

of prices over time.

In 1965, Adelman noted that long cycles did exist in economic data. (Adelman 1965)
Long cycles are oscillatory in nature but occur over large time intervals. In 1966 Granger
noted that most economic phenomena exhibit low level frequency components (Granger
1966) and that lack of inclusion can lead to problematic modeling procedures. This was

soon followed by Mandelbrot & Van Ness in 1968 who reclassified Brownian Motion
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into a more general form to allow for the inclusion of long memory processes. They
stated that “empirical studies of random chance phenomena often suggest, on the
contrary, a strong interdependence between distant samples” and additionally that: “It is
known that economic time series “typically” exhibit cycles of all orders of magnitude, the
slowest cycles having periods of duration comparable to the total sample size”

(Mandelbrot/Van Ness,1968).

After this flurry of activity on memory processes, the next major piece of research in time
series analysis was Box & Jenkins in 1976 with the formal derivation ARIMA(p,d,q)
modeling. That is to say, short memory autoregressive processes (p) and longer memory
non recursive moving averages (q) were included together into a modeling framework
with an integrating factor (d). This set up a template that could capture some memory
processes, at least short memory. However, long memory Brownian Motion was not
included. Brownian Motion was not included due to the fact that the integrating factor
only performs an exponential smoothing of the data, which does not work well with
cyclical processes. This is because the integrating factor in the ARIMA modelling

structure is forced to be an integer.

A few years later, Granger and Joyeux (1980) found that these low level frequencies may

exist in ARMA models as long term memory and should be included. In 1981 Hoskings

derived a method to include long memory processes, in what was considered a Fractional
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ARIMA or FARIMA model. The FARIMA model allowed the integrating factor of the

ARIMA model to vary more than just an integer value.

After this period, there came interest in chaotic processes as they are deterministic and a
system of this type would have long memory processes among its attributes. Brock did

most of the work, relating to macroeconomic phenomena. (Brock 1995)

As of late, more research has gone into dynamic systems and their properties for the
purposes of simulation or to recover primitive functions of a dynamic system in motion.
That is to say, that instead of decomposing a times series into additive components and
determining an error term with Brownian Motion, more attention is being paid to other
methods such as non-linear systems. Of particular interest, is whether or not a system is
linear or non-linear and if it exhibits long memory or chaotic behavior (Frank/Stengos

1988, Brock 1988 ).

Aside from the economics literature, many other disciplines, such as physics and biology,
have been working hard on dynamic system problems. Many books and articles have
been produced on the topic. (Hilborn 2000, Williams 1997) May started chaotic research
in biological processes (May 1973,1976,1996) through the use of attractor plots.
Attractor plots are scatter plots of time series data over different time intervals. The

attractor plot demonstrates whether a variable converges or diverges to a particular value
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over time. The attractor plot has been an important first step to visually understanding a

dynamic system.

Many “classic” physics problems demonstrate chaotic behavior, such as the “double
pendulum”. The double pendulum example describes the motion of two pendulums
swung from the same axis will exhibit a chaotic type of behavior. Planetary orbits can
behave in a chaotic way as well. That is to say, the attractor plot of a planet’s orbit over

time can look random, but it is not.

At our current point in the history and evolution of time series analysis and dynamic
systems, computing power has finally caught up with theory. Many dynamic systems do
not have closed form solutions and must be solved numerically. The additional
computing power allows us to be able to estimate and use many of these concepts in our

analysis of economic problems.

10
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The Gold Industry

For the first time, we utilize dynamic systems to evaluate the gold industry. Gold has a
rich and diverse economic history which makes for an interesting study. Gold has been
valued by societies for hundreds of years due to its many uses: store of wealth,
commodity, industrial metal, art. Therefore the price and production amounts of gold
have been recorded by numerous countries for the last century. Additionally gold
markets have sustained may changes which have been well documented. Because of the
availability and diverse nature of data relating to the price of gold, the gold industry is
used as a case study to demonstrate the usefulness and methodological differences of

dynamic systems.

Using dyanamic systems methodology we characterize the movements in the price of
gold over time. We start by calculating the long run dependence of gold prices. The long
run dependence is a measure of how important the history of the data is to its current
price. To estimate the amount of dependence we will use the Hurst Exponent, which
gives the level of long run dependence of data. We will discuss the various measures of

the Hurst Exponent and derive them for the price of gold.

Secondly we determine how much of the price of gold is random and how much is
deterministic. We do this by first defining what is random and deterministic. Then we

will measure for determinism via the Lyapunov Exponent. We will find that the market

11

www.manaraa.com



price of gold has both a deterministic (intra market) and random (inter marekt)

component.

After separating the intra and inter market components of the gold price, we test via
regression for industry structure affects on the price of gold. We will also be able to
develop a characteristic equation for the price of gold that incorporates the deterministic
and random components. We will use this characteristic equation to simulate the effects
of future events on the gold industry as well as to develop a linear supply and demand
model for the U.S. gold industry. We will find that utilization of dynamic systems allows
for an improved understanding to changes in the gold industry over time. It will be
shown that increases in the number of firms in the gold industry make the market price of
gold more subject to external events outside of the industry and thus more volatile and
that a reduction in the number of firms in the industry will narrow the range of volatility
in the market price of gold. From the supply and demand analysis we will discover that
the majority of the changes in the market price of gold come from the demand curve. We
will also learn how the intra and inter market prices affect the equilibrium price of gold.
All of the tested relationships are only possible through an understanding of dynamic

systems.

As our understanding of dynamic systems has evolved, so must our application of these
principles to our discipline. Let us begin with what a dynamic system is and how they

work.
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CHAPTER 2 - DYNAMIC SYSTEMS

Dynamic systems include any series of data that propagates through time. In this chapter
we will characterize the components of dynamic systems. First we will begin with
describing the behavior of dynamic systems. Next we will characterize the two broad
categories of dynamic systems, deterministic and random. We will then show a special
deterministic system, a chaotic one. Following that we will discuss how memory
(correlation of a variable over time) works and is measured in a dynamic system. We
will then look at the Lyapunov Exponent test to determine if a dynamic system is
deterministic. Finally we will discuss assumption differences in dynamic systems as well
as what a general functional form without a linearity assumption would be for a dynamic

system.

Behavior of Dynamic Systems
Dynamic systems are a functional form that explain the position of an object in space
over time. That is to say, dynamic systems can identify the position of an object in
space-time. Dynamic systems have been used extensively in the physical sciences to
explain bodies in motion, as well as in the biological sciences for population growth. In
economics, many market systems and economic models are dynamic in nature. We use
dynamic systems to understand rational and adaptive expectations. Dynamic functions
are used to determine rates of change in populations and sustainable yields. Dynamic

functions are also used in optimal control theory. With all of our use of dynamic
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systems, we have done little in the discipline to understand how these systems behave
and the impact of our assumptions. We will start with the development of what dynamic

systems are and how they behave.

“A dynamical system is a rule for time evolution on a state space.” (Meiss 2007) State
space is the set of all possible states of the dynamic system and each state space is a
unique coordinate point within the fixed set of the system. A dynamical system consists
of a state space, and the coordinates of the system, at any instant, are described by the
rule or functional form of the system. In economics, many of our dimensions of variables
are dynamic in nature, such as interest rates, prices and quantities. A further definition
may clarify: “Mathematically, a dynamical system is described by an initial value
problem. The implication is that there is a notion of time and that a state at one time
evolves to a state or possibly a collection of states at a later time. Thus states can be
ordered by time, and time can be thought of as a single quantity.” (Meiss 2007) Dynamic
systems are deterministic because they have a functional form which identifies the state

space and the evolution of the states over time completely.

For the economist, a deterministic dynamic system has a very profound meaning and
effect for understanding an economic system. Determining the functional form that
produces a system, is critical to identifying its behavior. If a system behaves in a
dynamically deterministic fashion, then that system is always in equilibrium at every

evolution on the state space. For instance, a pendulum has an equation that defines its
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motion completely. In order for the pendulum to swing back and forth, it is always
dependent on where it was previously, as well as where it is going, in order for it to
reverse direction. At every instance in time of the pedulum’s arc, the pendulum must be
in equilibrium or it would not be fully identified by the equation which governs its
motion. The example of the pendulum shows that a process that is deterministic has to be
in equilibrium always or the process could not be deterministic. The state space of the
dynamic system is the evolution of the variable in the phase space across time. The
variables that affect the pendulum’s motion, that can be measured at any instance, are in

the “phase space” of the dynamic system.

State space is the combination of the phase space and time. In supply and demand
models, price and quantity make up the phase space. The phase space of the supply and
demand model shows a static equilibrium point at an instant in time. The state space of
the supply and demand model, is the description of the evolution of the equilibriums over

time, which includes the phase space.
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Figure 1 — Evolution of Static Equilibriums

Trajectory

t .
L 1 Time

We classically define a static equilibrium in price-quantity space, which is our phase
space (Figure 1). As we have changes in supply and demand from time t=0 to time t=1
we arrive at a new static equilibrium, due to the demand curve shifting between t=0 to
t=1. The resulting plot in the lower part of the figure, results from connecting the

equilibria in the phase space over time. When we plot a variable across time, we lose a
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dimension. In this case we do not see the quantity dimension, although we know it is
necessary for the formation of the equilibrium price over time. Often, we only look at
either the trajectory of a price change over time or the static phase space without time. In
either case, we may lose information about the variables that caused the supply or

demand curves to shift.

In reality, the two graphs put together give the complete dynamic system in state space.

The state space describes the evolution of the equilibrium point over time (Figure 2).

Figure 2 - Complete Dynamic System of Supply and Demand

Trajectory

Dynamical systems are deterministic, if there is a unique point to point evolution

(trajectory) of the state space. Dynamic systems can be random, if there is a probability
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associated with the evolution of the movement between state space. For example, Figure
2 would represent a deterministic system if a function could be identified that would
exactly explain the position of the price, quantity demanded and quantity supplied of any
instance in time past, present and future. If no function could explain the position
exactly, then there may be randomness in the system. However, the presence of
randomness doesn’t preclude the function from being dynamic in nature. The
indentification of an appropriate function that describes the movement of all the variables
in the state space, is important to our understanding of how economic variables evolve.
If a system is deterministic, that suggests that the system is always in a static equilibrium
in the phase space at any given point in time along the trajectory. That conclusion is very
different than a random dynamic system where the exact trajectory is unknown.
Understanding whether or not a dynamic system is deterministic or random is important
to describing what type of behavior we might expect. Such as a system that drives
toward a long run equilibrium or a system that will never reach a static long run

equilibrium.

Certain tests can be used to demonstrate how deterministic or non-deterministic a system
is. Before these are presented, let us better define both a deterministic and non

deterministic system through example.

18

www.manaraa.com



Deterministic Dynamic Systems

A deterministic dynamic system can be defined and better understood using the example
of a simple, one dimensional model which propagates over time. For example the
example that follows will utilize the logistic function to demonstrate the one dimensional

model.

The logistic function is a non-linear dynamic system that describes the behavior of one
variable in the past, present and the future. The logistic function is dependent on the
function’s previous value, time and the sensitivity of the growth rate. This function is
frequently used by economists to model the supply or availability of various renewable
resources, as well as population growth rates (Conrad 2002). The logistic function in

discrete time takes the form:

Xev1 = aX(1—Xp)

The coefficient of sensitivity “alpha”, can theoretically take on any value from 0 to 4.
Although this value seems arbitrary, all other values for the sensitivity coefficient cause
the logistic function to become undefined. The value of X (growth rate) can take on a
value between 0 and 1. The variable alpha causes the motion of the variable X over time.
The state space for the logistic function will include all possible values for alpha, because
the state space defines the entire range of possibilities of all trajectories. As alpha

changes so does the evolution of X through the state space and all different iterations of
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X through space-time are predetermined given a specific alpha. Since the logistic
equation is a non-linear dynamic equation, the value of X in the future is dependent on its

past by functional definition: X;,; = aX;(1 — X;).

Consider the trajectry of X through the state space when the value of the alpha is 2.8. For
consistency across examples, a starting value for X of 1/2 will be utilized. In Figure 3
we can see that the value of X oscillates to a fixed point after aproximatley 15 time

periods and converges to the value 0.64.

Figure 3 - Logistic Function 0=2.8
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The logistic function with value a = 2.8 above, is an example of a dynamic system that is
attenuating to a constant level. The evolution of the state space converges to one point in
the set of all possible values in the state space. Another tool for understanding the
convergence of a series to a particular value over time can be used, the attractor plot

(May 1973).

The attractor plot is one time step plotted against another time step so that the system is
viewed in a time independent fashion. Based on the attractor plot (Figure 4) of the same
logistic function we can see that the value of X is converging to a value of 0.64. We
classify a deterministic system of this type, as stable and in this case has a “long run”
equilibrium of a single value over time. Systems that converge to a single value are
intuitively simple. Most of the use of dynamic systems in economics has stopped as this

point.
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Figure 4 - Attractor Plot of X;.; vs. X, for Logistic Function 0=2.8
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As a contrast to the “long run” stable equilibrium, let us look again at the same logistic
function, but this time change the value of alpha to 3. In this case (Figure 5) the series is

starting to converge to a particular point in the state space, but will never reach a single

point.
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Figure 5 - Logistic Function a=3
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In Figure 5 the system finds two equilibriums between the two points of approximatley
0.64 and 0.69. With no changes to the logistic equation, the system will continue to

alternate between these two equilibrums indefinatley.

The above logistic function is also a stable “long run” equilibrium. We can also see this
behavior in the attractor plot of the series (Figure 6) where the equilibrium does not

stabilize to one point, but instead oscillates between two equilibriums of 0.64 and 0.69.
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Figure 6 - Attractor Plot of X, vs. X, for Logistic Function 0=3
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In both of the two cases presented, the dynamic system is deterministic, but a small
change in the initial value of alpha from 2.8 to 3 caused the equilibrium of the system to
change from one stable value to a stable oscillation between two values. It is important
to note that a small change in a deterministic dynamic system can have a profound effect

on the resulting type of “long run” equilibrium.

We have seen examples of dynamic systems that are deterministic, however not all
dynamic systems are deterministic, let us now focus our attention on a dynamic system
that has some random component to it. As discussed, variables which move through time

are dynamic in nature. There are two types of dynamic systems. Those that are
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completley defined, as demonstrated earlier, and those dynamic systems which have an

element of randomness, also known as a stochastic process.
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Random Dynamic Systems
Dynamic systems contain variables which move through time. Occasionally the variables
of some dynamic systems are random. A random (stochastic) dynamic system is subject
to the effects of noise (randomness). In economics, we usually consider only a specific
type of noise “white noise”. Noise is a random variable and can fluctuate with or without
a regular pattern over time. Noise is common in many models, consider an AR(1)

process:

Xey1 = 01X + &

where &; is a random process

The random dynamic system is still a dynamic system as the AR(1) equation completley
describes how X; evolves over time through state space. In the case of the AR(1)
equation, the value of the variable in the next period is a function of the value of the
variable in the previous period plus randomness (noise). Typically noise refers to the
generating of fluctuations due to a large number of variables interacting in the system,
considered to be a problem of omitted variables. Sometimes however, noise in a dynamic
system is due to the variables in the system being probabilistic in nature and arises due to

the confluence of these probabilistic variables interacting. (Chatfield 2004)

Noise can have a pattern, just as in a deterministic system, and can be one of three types.

Noise can be persistent, anti persistent or completely random. All noise (regardless of
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type) falls under the general classification of Fractal Brownian Motion (FBM). As
economists, we typically use the subset of FBM that is completly random or Regular

Brownian Motion (RBM). FBM and RBM are related as:

RBM c FBM,

that is Random Brownian Motion is a subset of Fractal Brownian Motion. By definition
FBM falls into three catagories: persistent, anti-persistent and random. Persistent and
anti persistent randomness is serially correllated over time. What makes RBM special, is
that there is no serial correlation of the noise between time periods. Persistent FBM is a
situation in which the noise is positivley correllated over time. In persistent FBM, if the
previous value of the noise is moving up, there is a higher probability of the present value
moving up as well. Stock prices tend to exhibit this behavior, where the price of a stock

29 <e 9 <6

has movements that directionally go the same way for a while such as: “up”, “up”, “up”,
“down”, "up”, “up”, etc. Anti persistent noise has serial correllations that are negative.

In the anti persistent case, there is a higher likelihood that the series will alternate from

“up” to “down” with more periodicity.

To better understand the full complement of Brownian Motions let us define randomness
formally as was done by Mandelbrot and van Ness (1968). In their definition t designates
time and w is all the values of a random function where w belongs to sample space Q.

Therefore, Regular Brownian Motion (completley random) has a mean of zero and
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. . t, —t .
constant variance between any two points such as | 2 1 | Thus an RBM process in

completely random because B(t,, w) — B(t;, w) are independent of one another. A
RBM process is stationary because there is no serial correlation (dependence) between

time periods.

For the two other noise cases, we need to add a parameter to capture the serial
correlation. This parameter is called the Hurst Exponent (H), thus Fractional Brownian

Motion is By (t, w) and to look for stationarity we now have:

By (t2, w) — By (t1, w)

1 tz H—l ty H—l
-——{[ 1w -9 a0 - [ 1 -9 s |
I'(H +7) - -

o0

The gamma function is: I'(@): = [~ X% e Xdx and is used to ensure the Hurst

0

Exponent (H) takes on a positive value. The range of the Hurst Exponent is: 0< H<1 and

B is an FBM stochastic process.

With this formulation FBM falls into the three basic categories: anti persistent (0 < H <
%), persistent (% < H < 1) and neutrally persistent (RBM) (H = %). The formal

derivation of FBM means that stochastic processes can have a memory structure

(Granger,1980) and that RBM really is a subset of FBM and is indeed a special stochastic
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process. In other words some random processes are correlated over time and the

existence of correlation over time does not preclude a series from being random.

Further proof of serial correlation can be seen in the autocovariance of an incremental
random process Z where Z = [Z:k = 0,1,...]. Thus for any time series data, Z is the
random process. Whether Z is correlated or not can be defined as FBM by: Z; =

By (t;, w) — By (t;, w). As such the corresponding autocovariance function between t,

and t; is of the form:

(Bu(t2, w)By(ty, w))
(By(t2, w))

The autocorrelation is the covariance divided by the variance. In another form, we could
also define an h that is any fixed increment between observations so that the

autocovariance is equivalent to :

2H
r(n) = O'ZT((Tl-I- D+ (n-1)2H -2n?)n=1.2,...,h >0

The general formulation of the ACF function between any two time steps is:

[t27 + 37 — |ty — t,|*H]

2t2H

y(@®) =
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IfH = % then there is no serial correlation between time steps and we have a series that is
random in the common definition of the term. RBM is a true subset of FBM. In fact,
RBM is the special case of FBM when the Hurst Exponent is /2. When the Hurst
Exponent is 2 the covariances, or serial correlations in the random process go to zero in
the numerator of the ACF function. All exponents in the ACF function become one. A

graphic representation of an RBM process is in Figure 7 below.

Figure 7 - Regular Brownian Motion By = 1/2

7t
==

Although visual inspection of any stocastic prosess is difficult, the movement of Z(t) in
Figure 7 has no correlation between periods. To reiterate, RBM is special because there

is no serial correlation of noise between time periods. Another way to visually inspect
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the process, is to look at an attractor plot of the RBM process as we did before for the

deterministic system (Figure 8).

Figure 8 - Attractor Plot of RBM
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In Figure 8 there is no discernable pattern or convergence of the trajectory to a particular
value, which supports the lack of serial correlation between time periods, demonstrating
that RBM is different. The clustering or lack of clustering in the attractor plot is

determined by the Hurst Exponent.

Again, it is worth noting, that random and deterministic behavior can be difficult to

discriminate. Later we will discuss tests to identify the difference between random and
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deterministic behavior. In the case of persistent Fractal Brownian Motion, the terms are
positively correlated to one another (Mandelbrot,1971) and in this case we should expect
to see more of a “pattern”. Using the general functional form for an FBM process and
assigning a value of H = 0.9 for the Hurst Exponent, the persistent FBM in Figure 9 is

generated. (code to generate FBM in Appendix)

Figure 9 - Persistent FBM By=.9

Z(t)

A visual inspection of the random process does, not clearly demonstrate if the process is
correlated over time. However an attractor plot does provide a hint of correlation with a

visual inspection (Figure 10).
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Ziaq

Figure 10 - Attractor Plot of Persistent FBM
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The difference between the persistent FBM attractor plot and the RBM attractor plot is

the clustering of the Z values. Notice in Figure 10, that the random values are clustered

together “tighter” than that of the RBM (Figure 8).

To reiterate, visual comparison of an RBM plot (Figure 7) and a persistent FBM plot

(Figure 9) reveals little discernable differences. Close visual comparison of an RBM

attractor plot (Figure 8) and a persistent FBM attractor plot (Figure 10) does begin to

reveal the correlation between time periods. The attractor plots of these two different

types of Brownian Motion demonstrate that not just one type of randomness exists.
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Let us now review a third type of Brownian Motion, the antipersistent FBM. Again a
visual inspection of a plot of anti-persistent FBM (Figure 11) does not obviously

demonstrate a correlation over time.

In the case of Anti persistent FBM, the terms are negatively correlated over time. To
produce anti persistent FBM, we utilize the general form of the FBM equation and in this

case use a value of H= 0.3 for the Hurst Exponent.

Figure 11 - Anti Persistent FBM By=.3

Z(t)

In this example we may see more “cycling” behavior, however the attractor plot will

illuminate the difference in a more pronounced way (Figure 12).
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Figure 12 - Attractor Plot of Anti Persistent FBM
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In the case of anti persistent FBM the attrator plot (Figure 12) has values that are more
“spread out” than those in the previous two attrator plots. Again demonstrating that there

is correlation over time, but it is difficult to discern visually.

Regardless of the type of plot used, visual inspection alone does not adequately
demonstrate correlation over time. As such, we need to test for the Hurst Exponent,
which defines how a random process is correlated over time. We will discuss the tests a

in a forth coming section.
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Regardless of the noise type, it evolves, or moves through state space, the set of the state
space changes according to the probabilistic properties of the noise variable itself. Due to
noise in a random dynamic system, we cannot map by means of the attractor plot the
complete evolution of the variable through space time. Instead a compendium (many
“states of the world”) of state space trajectories exist after each demarcation of time in
the state space. Specifically, noise which is random, has infinite state spaces at each time
demarcation and is only constrained by the probabilistic properties of the noise. This is
not true of a deterministic dynamic system, which has a well defined dimension. (Longtin
2007) As will be discussed in the next section determining the size of the state space is
the basis of methods used to distinguish random dynamic systems from deterministic

systems.

The correlation of randomness over time is given as the integral of the autocorrelation
function over all times in the state space. The problem with the measurement and
detection of randomness, is that randomness typically occurs in conjunction with a
variable of interest in the functional form. This is true of the AR(1) process, as with
other random dynamic systems. Both processess occuring together can cause

misidentification of the dynamic system as being random and not deterministic.

To estimate a dynamic system, it is common to use a linear approximation. A linear
assumption can lead to errors in identifying the functional for of the system. For example

given the function:
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dx _
=@

where: ¢ = Noise

The measurement of the observational noise over time would be given by:

Measurement(t) = F(x(t) + a(t))

In this case the act of measurement is affected by the noise, but the variable of interest
x(t) is not. A linear type of treatment can make the detection of deterministic systems
difficult and cause mis-specification of a dynamic system. (Longtin 2007) Before we talk
about how to detect the difference between the two, we need to discuss a special type of

deterministic system that can mimic a random system.
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Chaotic Dynamic Systems
In the previous section we argued, by example, that visual comparisons of a plot or
attractor plot of an RBM, persistent FBM and of an anti-persistent FBM process do not
clearly demonstrate correlation between time periods. However, we will see that in

chaotic systems, attractor plots do provide a clear visual correlation over time.

A chaotic system is a condition in which the system appears to be random, but is in fact
deterministic. The existence of chaotic systems further compounds the problem of

specifying dynamic systems.

Refer back to the deterministic logistic function from the previous section, we can see
chaos as well. As the alpha in the logistic function changes, so too does the equilibrium.
A chaotic system, is one in which the alpha becomes ““sensitive” enough to cause the
logistic function to oscillate in a fashion that appears random. For the logistic function,
this is true for any alpha with a value of greater than 3.57. Figure 13 is one such system.

As before, the initial value of X is 0.5, but now the alpha is 3.95.
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Figure 13 - Logistic Function ¢=3.95
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Figure 13 appears to have behavior that is random. Visual inspection of the plot (Figure
13) shows no obvious correlation. It would be easy to come to the conclusion that this
plot is random. Discerning the difference between the random processess and the
deterministic one is difficult because they share similar properties such as constancy of
mean (0.56) and variance (0.09) throughout either system. In the case of this specific
function, we know that it is not random and we can verify this by looking at the attractor

plot when the alpha is 3.95 (Figure 14).
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Figure 14 - Attractor Plot of Logistic Function ¢=3.95
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The attractor plot of the above deterministic logistic function does not drive to a
particular value or values. Instead the equilibrium in the system is the parabola shown.
All values on the parabola are equilibria. In a chaotic system, the equilibrium becomes
the locus of points described by the parabola. The behavior of a deterministic system can
sometimes change from one equilibrium to many, simply by changing the alpha
coefficient. For example, in Figure 14 changing the alpha from 2.8 to 3.95 would cause
the system to become chaotic. Once a system is chaotic it is very sensitive to changes.
This sensitivity is what causes some systems to exhibit very volatile behavior, which

happens to mimic a random system.
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To find out whether or not a system is deterministic or random, we must determine how
much “memory” (how past events affect future events) a dynamic system has. We will

do this by estimating the Hurst Exponent that was presented earlier.
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Dynamic Systems and Long Memory Processes
Dynamic systems, whether they be random or deterministic, exhibit to a certain degree a
behavior called “long run dependency” or “Long Memory Processes” (Granger 1966). In
long run dependency events far back in time affect the evolution of the series through its
state space today. Because of long memory processes, any changes in a dynamic system
can affect the evolution of the trajectory through state space for very long periods,

sometimes for years to come.

Common measures of this phenomena are measured linearly, through the autocovariance
and autocorrelation functions, and dimensionally through the use of the Hurst Exponent.

(Hurst,1951)

Many dynamical systems do not posess constant variance and stationarity. The
autocovariance function implies that the covariance between two time segments of an
object’s state space, the covariance, only arises as a function of the absolute distance
between the two points in time. The autocorrelation function is similar, as it is the
autocovariance function normalized by the variance. This results in the autocorrelation
coefficient. Due to their assumptions of constant variance and stationarity,
autocovariance and autocorrelation functions are not the best methods to use for testing
dynamic systems. This does not mean that the measures of autocovariance and
autocorrelation are of no consequence. They can help as a basic start to analyzing a

dynamic system.
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To get a better idea of the degree of long run dependency in a system a better measure is
needed and comes in the form of the Hurst Exponent. The Hurst Exponent not only looks

at autocovariance and autocorrelation, but also how much the past influences the future.

The Hurst Exponent was originally developed by Harold Hurst in 1951 for use in
hydrology to determine optimal dam sizing for the Nile river. Hurst wanted to know how
much a previous years rainfall affected the height of the Nile river. The measure he
developed gave him insight into how long a rainfall would cause an increase in the height
of the Nile. The Hurst Exponent is a measurement that is non-deterministic in nature and
measures what is observed. Currently, there are five methods for estimation of the Hurst
Exponent (H). In no particular order they are: re-scaled range, autocorrelation, absolute
moment method, aggregated variance method and periodogram method. The original

method developed by Hurst was the re-scaled range method.

We will begin the explanation of tests for the Hurst Exponent with the original re scaled

range test.

Re-Scaled Range Test

In the re-scaled range test the Hurst Exponent is related to dimensional space (D) of the

system by the equation:
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The Hurst Exponent itself is bounded from 0 to 1. The scale between 0 and 1 describes
the behavior of the series. For example H = % Random Brownian Motion H > ;
indicates a persistent effect of previous data on current data. For example if we have a
high data point it is likely to be followed by a high data point again. H < % indicates

anti-persistent behavior, meaning a high value is likely to be followed by a low value. H

= 0 indicates some other type of noise such as pink or white noise.

One way the Hurst Exponent can be estimated is through the use of a re scaled range
analysis. To perform this type of analysis one starts with the amount of data you have.
For example let us assume we have 100 observations x(1), x(2), ..., x(100). We first start
by removing any trend by subtracting the mean (m) from each observation and develop

the series x'(1), x'(2), ...x'(100) where x'(t) = x(t) — m.

Next, a set of partial sums are formed where x"(1) = x'(1), x"(2) =x'(1) + x'(2) etc. until
x"(n) =x'(1) + x'(2) + ... + x'(n). Since this series is a sum of a mean-zero variable, the
series will be positive if the majority of variables is positive x'(n) and vice versa if
negative. Next, the range R is defined as R = max x" - min x". Finally, the range is scaled

by the standard deviation (s) of the series to get the re-scaled range (RR) or RR =R /s.

Feller (1951) has proven that if the re-scaled range is independent (no serial correlation)

1
and has finite variance it follows that RR = knz where k is a constant and n is the
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number of observations. To test this, a regression is run in the form of log(RR) =a +b

log(n) over many ranges of the observations where “a” is a constant and “b” is the slope
parameter that should correspond to % Hurst found that this did not hold and that

RR = kn' where H is the Hurst Exponent. Tested by running the regression log(RR) = a
+ H log(n) over various ranges, this method can be tedious to perform. For example, if
you had 1024 observations you would need to run this analysis over the entire range and
then again for the first and last 512 observations. Then again on all four 256 observations
sets and so on verifying that the Hurst Exponent was the same over all. This makes the re
scaled range method computationally cumbersome which limits its use. Another way to
calculate the Hurst Exponent is through the fractal dimension by estimating D using

FARIMA, although there is some debate over the correct value of D to use.

The use of FARIMA in estimating the Hurst Exponent from a re-scaled range perspective
comes from the relationship with the dimensional space given earlier. FARIMA allows
the “d” parameter in the FARIMA(p,d,q) model to be estimated. We will see an example
in the case study section of this paper. The next Hurst Exponent estimation method to

discuss is the Autocorrelation method.

The Autocorrelation Method for Hurst Estimation

To estimate a Hurst Exponent using the Autocorrelation Method, one needs to calculate a
sufficient number of lags to perform the analysis. In the case of this analysis, the Hurst

Exponent is related to the Autocorrelation Function (ACF) via the slope coefficient of the
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estimate of the log of the ACF versus the log of the frequency. To perform this test one
should calculate the ACF of a series until the ACF is negative and use all of the positive
values as a data series. A regression run on the natural log of the ACF values versus the
natural log of the lags of the ACF values is used to estimate the Hurst Exponent. The

Hurst Exponent is related to the slope coefficient via:

H=1+2
N 2

Where a = slope of regression. Here again it is important to have a sufficient amount of
points. However unlike the re scaled range method, the range of the data does not have
to be a power of 2. The ACF method is easier to calculate than the re scaled range

method.

Absolute Moment Method for Hurst Estimation

To estimate the Hurst Exponent with the absolute moment method, one starts estimation
by dividing a series of length n into shorter segments of length m and then averaging the

series over each m length segment.

1 xOkm n
Xm@y=—§: Xok=12,..,~
M bdi=(k-1)m+1 m

To get the absolute moment (AM) of the series:

1 N/m _
AMm=—Z X"M(k) - X|"
W= D, KT = X
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This method is generally used for n=1. If n=2 or larger it reduces to the aggregated
variance method. In a log/log plot of the absolute moments versus m the slope(a) of the

linear fit is related to the Hurst Exponent as:

a=n(H—1)ora=H—1ifn=1

soH=a+1

If there is no long run dependence, then the Hurst Exponent again will be 0.5.

Agoregated Variance Method for Hurst Estimation

To estimate the Hurst Exponent with the aggregated variance method one starts as in the
absolute moment method, by dividing a series of length n into shorter segments of length

m and then averaging the series over each m length segment.

1 km n
Xm(k):z—z Xok=12,...,~
m i=(k—1)m+1 m

Then the sample variance is calculated for each m length segment and the log of the
variance is plotted against the log of m, as done in previous methods. Once again, the

slope (@) of the linear regression of the log/log plot is related to the Hurst Exponent.
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As before, if H= 0.5 then the series has no long range dependence.

Periodogram Method for Hurst Estimation

To estimate the Hurst Exponent with the Periodogram method, one estimates the slope of
the log of the Periodogram (I) versus the log of the Frequency over the entire domain

from 0 to . The Hurst Exponent is:

Where a is the slope of the regression. To perform the periodogram analysis one needs

to use the Fourier equation (Wei 2006) to estimate the Fourier coefficients a;, and by,:

n

Zy = Zz (axcos(wit) + bysin(wyt))
k=0
where:
Z:=Series
2k
Wy = TZFrequency

1" n
a, =— Zicos(wit),k =0and k = Eif nis even
Ntai=1
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2 n n—1

a, =— Z.cos(wit), k=1.2,..., if nisodd
n t=1 2
and
2" _ n—1
b, = - tletsm (wit), k=1,.2,..., 5

To calculate the periodogram the Fourier coefficients are used to calculate the

periodogram (I) where (Wei 2006):
I(wy) =na3, k=0

n. 2 2 n—1
Iwi) = 5 (@i + bie), ke = 1.2, ——

n
I(wy) = nai, k = Ewhen nis even
2

Once the periodogram coefficients are calculated, the regression of log(I) versus
log(Frequency) is used to estimate the Hurst Exponent. The estimate of the slope of the

regression is used in the calculation of the Hurst Exponent.

Regardless of the estimation method that is applied to estimate the Hurst Exponent, the
Hurst Exponent measures the correlation of data over time. The Hurst Exponent is
helpful in characterizing the dynamic system. If H= 0.5 then there is no memory in the

system and the system is completley random (RBM). If H is not 0.5 then the system may
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be deterministic (FBM) or some combination of the two. Keeping the concept of
“memory” of a system in mind let us look at the problems of the traditional time series

approach to classifying a system.
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Confusion in Testing for Types of Dynamic Systems
Previously, it was demonstrasted how the Hurst Exponent is helpful in characterizing a
dynamic system. However, with our current methods of time series classification, we can
have difficulty in determining an appropriate model specification. For example, let us
visually inspect two graphs A and B (Figures 15 and 16) containing different simulated
time series data each over 100 periods and try to determine which series has a random

component and which one does not.

Figure 15 - Graph A

X(t)

Period
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X(t)
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Period

If you think the graph of the data in Figure 16 is not random than you would be incorrect.

The series in Figure 16 does contain a random component whereas the data in Figure 15

is not random at all. This is an interesting problem for economic analysis. Just so we are

working from the same information, let us look at the functions that produced both data
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where:
a = sensitivity

& = random normal error term

As will be discussed in a moment, the first equation is a logistic and is completely
deterministic. Whereas the second function (Figure 16), is a standard autoregressive

function with a random process.

To detect whether or not a series is random, it is conventional to begin with a traditional
time series testing method such as the autocorrelation function (ACF). Recall that the
ACF is the autocovariance between to time steps, divided by the variance. In Figures 17

an 18 below we see the ACF plots for both functions.
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ACF Values

Figure 17 - ACF Plot of Graph A Data
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Figure 18 - ACF Plot of Graph B Data
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Notice that in both cases, each equation shows some cycling behavior and both have
similar magnitudes of ACF values. In a standard time series approach, we would be
tempted to use an autoregressive (AR) model. Indeed if we did, we would find that the
data for Figure 18 could be reduced nicely using an AR(1) model and that the ACF of the
residuals would be stationary. However the data for Figure 17 would not reduce and
would need additional components. Using a traditional ARMA approach an ARMA(1,1)
model would fit the data in Figure 17 well and the residuals would be considered
stationary. Note that in both cases, there would not be a unit root problem as both final

models would be outside the unit circle.
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At this point in time, the reader may question why not use ARMA or ARIMA models if
we can get a reasonable forecast? The answer: in the case of data from Figure 17 the
sensitivity of the coefficient a is important to describing how the system behaves. When
using a linearly additive estimation technique such as ARMA to estimate, the sensitivity
of the coefficient looses information due to the linear measurement. This causes a

misidentification of the functional form of the system.

So let us now start our discussion of what a dynamic system is and how it works, by
taking a step back and defining a dynamic system more generally and more precisely and

how it applies to economics.
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Identifying a Dynamic System as Deterministic
Although it can be rather difficult to detect, there are ways to test a system for
deterministic and chaotic behavior. The most common test is that of the Lyapunov

Exponent. The Lyapunov Exponent is defined as:

1 &
€o

Where ¢ at any time step is defined as the difference between the actual series and the
reference trajectory. The reference trajectory is generated numerically by creating a
series that is close to the actural series. In estimation of the Lyapunov Exponent the
distance (seperation) of the reference trajectory is continually increased. Lyapunov

Exponents are calculated over a range of different trajectories to evaluate a series of data.

To perform this test, one needs to measure the divergence of the trajectory away from a
reference trajectory at various time steps. If the system is deterministic or chaotic that
implies a predetermined path will exist, so the actual trajectory and the reference
trajectory would be close to one another. As we can see in Figure 19 below, we have
data that falls within a point on the hyper sphere at &, and at another point in time t. The

data should be dimensionally close, if the series is deterministic.
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Figure 19 - Reference Trajectory

Reference Trajectory

If a series is chaotic, then it is by definition deterministic. Therefore the actual series,
must lie in the same dimension as the reference trajectory, if the Lyapunov Exponent is
positive. One note when testing for chaos, is that it may not exist on all n-dimensions.
As such, testing amongst various dimensions is necessary, since not all dimensions form

a contact manifold (intersection) with one another.

The Lyapunov Exponent characterizes the rate at which close trajectories separate.
Because rates of separation can differ depending on an objects orientation, there are many
Lyapunov Exponents. The number of Lyapunov Exponents depends on how the object
may separate. Thus it is common to look for the largest Lyapunov Exponent, as this is

the maximum amount of divergence.
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Again if a series is random the state space will have infinite dimension. Also, the
Lyapunov Exponent can give us an idea of the behavior of the series. For example, if a
system is conservative, that is to say does not dissipate, then the sum of all the Lyapunov
Exponents will equal zero. If a system dissipates, then the sum of the Lyapunov

Exponents is negative. The sum is positive if the series gains momentum.

Using the Lyapunov Exponent helps us to learn if a dynamic system has deterministic
behavior. Testing the Lyapunov Exponent against multiple dimensions is necessary.
Using the largets Lyapunov Exponent produces the largest amount of divergence. The
largest Lyapunov Exponent tells us how many dimensions the system has and therefore
whether or not a series is deterministic (limited dimensions) or random (infinite
dimension). Now let us look at differences between testing for linear and non-linear

dynamic systems.
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Testing Dynamical Systems
A dynamical system may or may not lie in a restricted dimensional space (some are
deterministic and some are random) however, all move through space time. Since
dynamical systems may or may not be linear, there is a different approach to testing for
their existence than standard linear tests. In other words, different assumptions must be
used since a dynamic system may or may not be linear. The table below shows the

differences between the two major types of dynamical models, linear and non linear.

Table 1 - Linear vs. Non-Linear Systems

Linear Non-Linear
Constant Mean May or May Not Have Constant
Mean
Invertible Not Invertible
Variable is Independent and Variable is Not Independent and
Identically Distributed Identically Distributed
Series Has Infinite Dimension Series Lies in Restricted Space
Series is Additively Separable Series is Not Additively Separable

To test whether a system is dynamical, and to what degree, one needs to investigate the
state space as well as the long run dependence with the methodologies previously
discussed (Hurst Exponent, Lyapunov Exponent, ACF). Let us not forget that seeing
oscillations in a series, may not mean the system is non linear. Conversley seeing a
pattern that is flat, does not mean a system is linear. Again, to see this notion you can

refer to the logistic function discussed in Figures 3, 5 and 13.
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When using dynamic systems we have to be careful with more traditional techniques.
When a series is differenced to make it stationary using standard time series techniques,
we have demonstrated that the measurmentof sensitivity is lost. Also, we lose the signal

that the process is generating naturally as it travels through space-time.

Dynamical systems are not simply identified by an observation at a given point in time.
The dimensions that we view observationally are only one part of the objects cause of
trajectory at a given point. As we will see when testing dynamical systems, there are
other dimensions at work “behind the scenes” that produce the observation. Recall when
we looked at the supply and demand model over time, we were able to view price

changes over time. But the dimension we lost was quantity.

Since we do not see all dimensions in a dynamic system, it is important to estimate them
through the use of manifolds. A manifold is an abstract space in which every point has a
neighborhood that resembles coordinate space. The dimension is the minimum number
of coordinates needed to specify every point within the manifold. Thus dimensional
space is important in understanding dynamical systems. A line, or a circle has a manifold
of one and a plane would have a manifold of two. So in defining a dynamical system,
there needs to be enough manifolds used so that we get a picture that resembles
coordinate space. The number of dimensions used is analogous to creation of a space that
houses all points of that effect, such as mass or acceleration. The use of manifolds and

dimensional space, describes how to define the general functional form of a dynamic

61

www.manaraa.com



equation. Using this information helps to determine if a dynamic system is linear or not,

which is important in assigning a correct functional form to economic data.
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A General Functional Form for Dynamic Systems
In general, a manifold is defined such that the dimensions within it, define the behavior
of the series. For example, given any one point we define the point by its dimensional

coordinates.

Ppi= (P1x'P1y‘P1z)

There may be more dimensions than the example lists. Each one of these dimensional
coordinates contains a vector of possibilities. In a general form more familiar to
economists, we would use a Hamiltonian to define these dimensions. For example a

common motion problem would be defined as:

Z:= (p,q,t)

Where p is momentum, q is the generalized coordinates and t is time. In this case the

value of the series at any instant is:
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Where p = momentum vector and q = generalized coordinates vector. In this case, the
vector of time goes away. In terms of dimensions, we find an odd number because time
is always its own dimension. However, what is usually lacking in dynamical models are
the other dimensions of behavior. For example randomness, mass (stock), acceleration
(extraction), historical dependence, etc. So a general form of a dynamical economic

system would look as follows:

Pe: = (M, Qg, 1y, di, APy)
where:
P; = observtion, m; = mass, a; = acceleration,r, = random, d;

= deterministic, dp, = dependence (memory)

The Hamiltonian in this case would be structured as before but p is instead given in the

defining equality above.

Z:=7Z(p,q,t)

Of course by redefining the Hamiltonian in this way, it makes integration difficult. That

is why manifolds need to be used on each variable.

We have described the behavior of dynamic systems and their various catagories

(deterministic and random), as well as derived tests for determing if a dynamic system
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has memory or is deterministic. We have described the difference in assumptions
between linear and non-linear dynamic systems and what a general functional form of a
dynamic system looks like. Using the methodology presented so far we will separate the
deterministic and random components of economic variables which will allow us to
characterize a dynamic economic system. We can then study the results of the
characterization and the impact the components of a dynamic system has on economic

variables.

In the following case study we will see that the gold industry is an example of a dynamic
system with both random and deterministic components. Using the Hurst Exponent,
Lyapunov Exponent and autocorrelation tests, we will be able to separate the
deterministic from the random. This information will allow us to characterize the
behavior of gold prices based on intra and inter market events. An equation will be
formulated based on the dynamic behavior of gold prices. The characteristic equation of
gold prices will allow for simulation of market events and the construction of a supply

and demand curve for the current US gold market.
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CHAPTER 3 - THE CASE OF GOLD

There are many examples of dynamic systems in economics. The changes in prices of
commodities are examples of dynamic systems that interest economists. Of particular
interest to many individuals, is the change in the price of gold over time. Consumers and
economists have an interest in gold for many reasons: gold’s history of regulation,
various uses (products, investment) and recent volatile history. Characterizing the
dynamic system of gold prices will allow for the measurement of how market structure
changes affect the price of gold. We will find in our case study that industry
concentration causes the price of gold to become less volatile. Furthermore
characterizing an appropriate function for the evolution of gold prices over time, will

allow the reconstruction of supply and demand curves for the US gold industry.

To study the dynamic system of gold prices, we will start by testing for long run
dependence and deterministic behavior. We will use all of the various methods for

estimating long run dependence with the Hurst Exponent given in the previous chapter.

We will then test for deterministic behavior by estimating Lyapunov Exponents for gold
price, again using the methods described previously, to find out how deterministic or

random gold prices are.

Once we have determined the amount of long run dependence and the deterministic

portion of the gold price, we will separate the two. Seperation of the deterministic
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portion of the gold price from the random portion will be conducted through the use of a

space-time regression, utilizing the estimates of the Hurst and Lyapunov Exponents.

After the deterministic and random portions of the price of gold are separated we will
study how sensitive the gold industry is to external and internal events. An equation for
gold prices, based on deterministic and random components will be developed. This
equation will then be used to simulate possible affects from future events. Using the
dynamical equation for gold prices, we will see how external or internal effects on the

gold industry can affect gold prices.

Finally, we will use the dynamic equation for gold prices to develop a supply and demand
curve for US production and consumption of gold. Before we begin let us get an idea of

the gold industry, past and present.

A Brief History of the Gold Industry
The history of gold is multifaceted. In ancient civilizations gold was used for jewelry and
ceremonial purposes (NMA 2008). Gold began to be used instead of silver for coinage
in many societies over the centuries (NMA 2008). In more recent times, throughout the
last century, governments have used gold as a monetary standard and have controlled the
price up until the ending of the gold standards in the 1970s (NMA 2008). After the
deregulation of gold, the industry expanded with many new new mining firms. The

expansion of the gold industry was short lived due to mergers and consolidation over the
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last decade or so. A peak in merger activity in 2001 resulted in 40.9 billion dollars worth
of mergers in the gold industry (Ericsson 2001-02). From 1990 to 2001 the Herfindahl-
Hirschman Index for the 10 largest firms increased from 395 to 457 or 62 points
(Ericsson 2001-02). The control over the production of gold has declined since
deregulation, to historic lows (Ericsson 1994). To get an unbiased historical perspective
of the gold industry, gold production data by country was gathered from the “Minerals

Yearbook” (USGS) from 1931 to 2006. The results by country and by decade are in

Table 2.
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Table 2 - Percentage of World Gold Production by Country (by percent)

1930s  1940s  1950s  1960s  1970s  1980s  1990s  2000s
Canada 11.82 12.00 12.10 6.93 4.50 5.85 6.99 5.45
Mexico 2.41 1.79 1.07 0.42 0.40 0.50 0.73 1.12
United 10.71 7.19 5.22 2.90 2.90 6.39 14.16 11.50
States
Bolivia 0.05 0.05 0.06 0.13 0.08 0.13 0.44 0.42
Brazil 0.60 0.64 0.49 0.26 0.51 4.07 3.02 1.79
Chile 0.64 0.73 0.37 0.11 0.25 1.08 1.71 1.68
Colombia 1.19 1.61 1.09 0.63 0.60 1.59 1.16 1.36
Ecuador 0.23 0.25 0.07 0.03 0.02 0.17 0.50 0.16
Peru 0.45 0.60 0.41 0.21 0.23 0.42 2.23 6.75
Venezuela | 0.33 0.24 0.13 0.05 0.04 0.12 0.39 0.37
Finland 0.01 0.03 0.06 0.04 0.06 0.09 0.12 0.20
France 0.24 0.15 0.12 0.09 0.13 0.15 0.18 0.08
Sweden 0.56 0.39 0.25 0.18 0.16 0.22 0.26 0.19
India 1.11 0.66 0.57 0.26 0.24 0.14 0.10 0.15
Japan 1.94 0.67 0.61 0.48 0.43 0.35 0.38 0.33
Philippines | 1.61 0.80 1.13 0.82 1.36 1.94 1.23 1.39
South 18.65 40.81 39.28 49.81 61.81 43.59 23.67 14.20
Africa
Australia 2.07 3.10 2.98 1.75 1.45 438 11.58 10.75
New 0.26 0.44 0.12 0.03 0.02 0.07 0.41 0.38
Zealand

South Africa represented the largest portion of production in the market for gold over a

number of decades. Figure 20 shows the comparison of three of the largest gold

producing nations: South Africa, United States and Canada.
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Figure 20 - Percentage of World Gold Production by Country (1931-2006)
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Prior to industry deregulation, South Africa was the largest producer of gold. After
deregulation, countries such as the United States and Australia increased production
significantly and South Africa decreased production significantly. For a more detailed
perspective of the rest of the gold producing countries South Africa was removed due to

scaling issues (Figure 21).
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Figure 21 - Percentage of World Gold Production by Country (1931-2006)
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Currently no country represents more than 15% of the production in the entire industry.

As such, market structure is vital to understanding the changes in the price of gold.

To unde